
Algorithms in OpenFAST v2

Bonnie Jonkman

April 17, 2020

1 Definitions and Nomenclature

Module Abbreviation Abbreviation
Name in Module in this Document

ElastoDyn ED ED
BeamDyn BD BD

AeroDyn14 AD14 AD14
AeroDyn AD AD
ServoDyn SrvD SrvD
SubDyn SD SD

HydroDyn HydroDyn HD
MAP++ MAPp MAP

FEAMooring FEAM FEAM
MoorDyn MD MD

OrcaFlexInterface Orca Orca
InflowWind IfW IfW

IceFloe IceFloe IceF
IceDyn IceD IceD

Table 1: Abbreviations for modules in FAST v8

2 Initializations

1



3 Input-Output Relationships

3.1 Input-Output Solves (Option 2 Before 1)

This algorithm documents the procedure for the Input-Output solves in FAST,
assuming all modules are in use. If an individual module is not in use during
a particular simulation, the calls to that module’s subroutines are omitted and
the module’s inputs and outputs are neither set nor used.

1: procedure CalcOutputs And SolveForInputs()
2: y ED ← ED CalcOutput(p ED , u ED , x ED , xd ED , z ED)
3:

4: u AD(not InflowWind)← TransferOutputsToInputs(y ED)
5: u IfW ← TransferOutputsToInputs(y EDatu ADnodes)
6: y IfW ← IfW CalcOutput(u IfW andotherIfW datastructures)
7: u AD(InflowWind only)← TransferOutputsToInputs(y IfW )
8: y AD ← AD CalcOutput(p AD , u AD , x AD , xd AD , z AD)
9:

10: u SrvD ← TransferOutputsToInputs(y ED , y IfW )
11: y SrvD ← SrvD CalcOutput(p SrvD , u SrvD ,

x SrvD , xd SrvD , z SrvD)
12:

13: u ED(not platform reference point)← TransferOutputsToInputs(y SrvD, y AD)
14: u HD ← TransferMeshMotions(y ED)
15: u SD ← TransferMeshMotions(y ED)
16: u MAP ← TransferMeshMotions(y ED)
17: u FEAM ← TransferMeshMotions(y ED)
18:

19: ED HD SD Mooring Ice InputOutputSolve()
20:

21: u AD ← TransferOutputsToInputs(y ED)
22: u SrvD ← TransferOutputsToInputs(y ED , y AD)
23: end procedure

Note that inputs to ElastoDyn before calling CalcOutput() in the first step
are not set in CalcOutputs And SolveForInputs(). Instead, the ElastoDyn in-
puts are set depending on where CalcOutputs And SolveForInputs() is called:

• At time 0, the inputs are the initial guess from ElastoDyn;
• On the prediction step, the inputs are extrapolated values from the time

history of ElastoDyn inputs;
• On the first correction step, the inputs are the values calculated in the

prediction step;
• On subsequent correction steps, the inputs are the values calculated in the

previous correction step.

2



3.2 Input-Output Solve for HydroDyn, SubDyn, MAP,
FEAMooring, IceFloe, and the Platform Reference
Point Mesh in ElastoDyn

This procedure implements Solve Option 1 for the accelerations and loads in
HydroDyn, SubDyn, MAP , FEAMooring, and ElastoDyn (at its platform
reference point mesh). The other input-output relationships for these modules
are solved using Solve Option 2.

1: procedure ED HD SD Mooring Ice InputOutputSolve()
2:

3: y MAP ← CalcOutput(p MAP , u MAP , x MAP , xd MAP , z MAP)
4: y FEAM ← CalcOutput(p FEAM , u FEAM , x FEAM , xd FEAM , z FEAM )
5: y IceF ← CalcOutput(p IceF , u IceF , x IceF , xd IceF , z IceF )
6: y IceD(:)← CalcOutput(p IceD(:), u IceD(:), x IceD(:), xd IceD(:), z IceD(:))
7:

8: . Form u vector using loads and accelerations from u HD , u SD , and
platform reference input from u ED

9:

10: u← u vec(u HD , u SD , u ED)
11: k ← 0
12: loop . Solve for loads and accelerations (direct feed-through terms)
13: y ED ← ED CalcOutput(p ED , u ED , x ED , xd ED , z ED)
14: y SD ← SD CalcOutput(p SD , u SD , x SD , xd SD , z SD)
15: y HD ← HD CalcOutput(p HD , u HD , x HD , xd HD , z HD)
16: if k ≥ k max then
17: exit loop
18: end if
19: u MAP tmp ← TransferMeshMotions(y ED)
20: u FEAM tmp ← TransferMeshMotions(y ED)
21: u IceF tmp ← TransferMeshMotions(y SD)
22: u IceD tmp(:)← TransferMeshMotions(y SD)
23: u HD tmp ← TransferMeshMotions(y ED, y SD)
24: u SD tmp ← TransferMeshMotions(y ED)

∪TransferMeshLoads(y SD ,

y HD , u HD tmp,

y IceF , u IceF tmp)

y IceD(:), u IceD tmp(:))

25: u ED tmp ← TransferMeshLoads(y ED ,

y HD , u HD tmp,

y SD , u SD tmp,

y MAP , u MAP tmp,

y FEAM , u FEAM tmp)
26:

27: U Residual ← u− u vec(u HD tmp, u SD tmp, u ED tmp)

3



28:

29: if last Jacobian was calculated at least DT UJac seconds ago then
30: Calculate ∂U

∂u
31: end if
32: Solve ∂U

∂u ∆u = −U Residual for ∆u
33:

34: if ‖∆u‖2 < tolerance then . To be implemented later
35: exit loop
36: end if
37:

38: u← u + ∆u
39: Transfer u to u HD , u SD , and u ED. loads and accelerations only
40: k = k + 1
41: end loop
42: . Transfer non-acceleration fields to motion input meshes
43:

44: u HD(not accelerations)← TransferMeshMotions(y ED , y SD)
45: u SD(not accelerations)← TransferMeshMotions(y ED)
46:

47: u MAP ← TransferMeshMotions(y ED)
48: u FEAM ← TransferMeshMotions(y ED)
49: u IceF ← TransferMeshMotions(y SD)
50: u IceD(:)← TransferMeshMotions(y SD)
51: end procedure

3.3 Implementation of line2-to-line2 loads mapping

The inverse-lumping of loads is computed by a block matrix solve for the dis-
tributed forces and moments, using the following equation:[

FDL

MDL

]
=

[
A 0
B A

] [
FD

MD

]
(1)

Because the forces do not depend on the moments, we first solve for the
distributed forces, FD: [

FDL
]

= [A]
[
FD
]

(2)

We then use the known values to solve for the distributed moments, MD:

[
MDL

]
=
[
B A

] [FD

MD

]
= [B]

[
FD
]

+ [A]
[
MD

]
(3)

or [
MDL

]
− [B]

[
FD
]

= [A]
[
MD

]
(4)

Rather than store the matrix B, we directly perform the cross products that
the matrix B represents. This makes the left-hand side of Equation 4 known,
leaving us with one matrix solve. This solve uses the same matrix A used to

4



obtain the distributed forces in Equation 2; A depends only on element reference
positions and connectivity. We use the LU factorization of matrix A so that the
second solve does not introduce much additional overhead.

5



4 Solve Option 2 Improvements

4.1 Input-Output Solves inside AdvanceStates

This algorithm documents the procedure for advancing states with option 2
Input-Output solves in FAST, assuming all modules are in use. If an individual
module is not in use during a particular simulation, the calls to that module’s
subroutines are omitted and the module’s inputs and outputs are neither set
nor used.

1: procedure FAST AdvanceStates()
2: ED UpdateStates(p ED , u ED , x ED , xd ED , z ED)
3: y ED ← ED CalcOutput(p ED , u ED , x ED , xd ED , z ED)
4:

5: u BD(hub and root motions)← TransferOutputsToInputs(y ED)
6: BD UpdateStates(p BD , u BD , x BD , xd BD , z BD)
7: y BD ← BD CalcOutput(p BD , u BD , x BD , xd BD , z BD)
8:

9: u AD(not InflowWind)← TransferOutputsToInputs(y ED , y BD)
10: u IfW ← TransferOutputsToInputs(y ED , y BD at u AD nodes)
11: IfW UpdateStates(p IfW , u IfW , x IfW , xd IfW , z IfW )
12: y IfW ← IfW CalcOutput(u IfW and other IfW data structures)
13:

14: u AD(InflowWind only)← TransferOutputsToInputs(y IfW )
15: u SrvD ← TransferOutputsToInputs(y ED , y BD , y IfW )
16: AD UpdateStates(p AD , u AD , x AD , xd AD , z AD)
17: SrvD UpdateStates(p SrvD , u SrvD , x SrvD , xd SrvD , z SrvD)
18:

19: All other modules (used in Solve Option 1) advance their states
20: end procedure

Note that AeroDyn and ServoDyn outputs get calculated inside the CalcOutputs And SolveForInputs
routine. ElastoDyn, BeamDyn, and InflowWind outputs do not get recalculated
in CalcOutputs And SolveForInputs except for the first time the routine is
called (because CalcOutput is called before UpdateStates at time 0).

5 Linearization

5.1 Loads Transfer

The loads transfer can be broken down into four components, all of which are
used in the Line2-to-Line2 loads transfer:

1. Augment the source mesh with additional nodes.

2. Lump the distributed loads on the augmented Line2 source mesh to a
Point mesh.

3. Perform Point-to-Point loads transfer.

6



4. Distribute (or ”unlump”) the point loads.

The other loads transfers are just subsets of the Line2-to-Line2 transfer:

• Line2-to-Line2: Perform steps 1, 2, 3, and 4.

• Line2-to-Point: Perform steps 1, 2, and 3.

• Point-to-Line2: Perform steps 3 and 4.

• Point-to-Point: Perform step 3.

Each of the four steps can be represented with a linear equation. The lin-
earization of the loads transfers is just multiplying the appropriate matrices
generated in each of the steps.

5.1.1 Step 1: Augment the source mesh

The equation that linearizes mesh augmentation is
~uD

~uSA

~fSA

~mSA

 =


IND

0 0 0
0 MA 0 0
0 0 MA 0
0 0 0 MA



~uD

~uS

~fS

~mS

 (5)

where MA ∈ RNSA,NS indicates the mapping of nodes from the source mesh (with
NS nodes) to the augmented source mesh (with NSA nodes). The destination
mesh (with ND nodes) is unchanged, as is indicated by matrix IND .

5.1.2 Step 2: Lump loads on a Line2 mesh to a Point mesh

The equation that linearizes the lumping of loads is
~uSA

~FSAL

~MSAL

 =

 INSA 0 0
0 MSL

li 0
MSL

uS MSL
f MSL

li


~uSA

~fSA

~mSA

 (6)

where MSL
li ,MSL

uS ,MSL
f ∈ RNSA,NSA are block matrices that indicate the map-

ping of the lumped values to distributed values. MSL
li is matrix A in Equation

2, which depends only on element reference positions and connectivity. Matrices
MSL

uS and MSL
f also depend on values at their operating point.

5.1.3 Step 3: Perform Point-to-Point loads transfer

The equation that performs Point-to-Point load transfer can be written as
~uD

~uS

~FD

~MD

 =


IND

0 0 0
0 INS

0 0
0 0 MD

li 0
MD

uD MD
uS MD

f MD
li



~uD

~uS

~FS

~DS

 (7)

7



where MD
li ,M

D
uS ,M

D
f ∈ RND ,NS are block matrices that indicate the transfer of

loads from one source node to a node on the destination mesh. MD
uD ∈ RND ,ND

is a diagonal matrix that indicates how the destination mesh’s displaced position
effects the transfer.

5.1.4 Step 4: Distribute Point loads to a Line2 mesh

Distributing loads from a Point mesh to a Line2 mesh is the inverse of step 2.
From Equation 6 the equation that linearizes the lumping of loads on a

destination mesh is
~uD

~FD

~MD

 =

 IND 0 0
0 MDL

li 0
MDL

uD MDL
f MDL

li


~uD

~fD

~mD

 (8)

where MDL
li ,MDL

uD ,MDL
f ∈ RND ,ND are block matrices that indicate the map-

ping of the lumped values to distributed values. It follows that the inverse of
this equation is

~uD

~fD

~mD

 =

 IND
0 0

0
[
MDL

li

]−1
0

−
[
MDL

li

]−1
MDL

uD −
[
MDL

li

]−1
MDL

f

[
MDL

li

]−1 [
MDL

li

]−1




~uD

~FD

~MD


(9)

The only inverse we need is already formed (stored as an LU decomposition)
from the loads transfer, so we need not form it again.

5.1.5 Putting it together

To form the matrices for loads transfers for the various mappings available, we
now need to multiply a few matrices to return the linearization matrix that
converts loads from the source mesh to loads on the line mesh:

{
~fD

~mD

}
=

[
0 0 Mli 0

MuD MuS Mf Mli

]
~uD

~uS

~fD

~mD

 (10)

8



• Line2-to-Line2: Perform steps 1, 2, 3, and 4.

{
~fD

~mD

}
=

[
0

[
MDL

li

]−1
0

−
[
MDL

li

]−1
MDL

uD −
[
MDL

li

]−1
MDL

f

[
MDL

li

]−1 [
MDL

li

]−1

]
 IND

0 0 0
0 0 MD

li 0
MD

uD MD
uS MD

f MD
li



IND

0 0 0
0 INSA 0 0
0 0 MSL

li 0
0 MSL

uS MSL
f MSL

li



IND 0 0 0

0 MA 0 0
0 0 MA 0
0 0 0 MA



~uD

~uS

~fS

~mS

 (11)

Mli =
(
MDL

li

)−1
MD

li M
SL
li MA (12)

MuD =
(
MDL

li

)−1 [
MD

uD −MDL
uD

]
(13)

MuS =
(
MDL

li

)−1 [
MD

uS + MD
li M

SL
uS

]
MA (14)

Mf =
(
MDL

li

)−1
([

MD
f −MDL

f

(
MDL

li

)−1
MD

li

]
MSL

li + MD
li M

SL
f

)
MA

(15)

• Line2-to-Point: Perform steps 1, 2, and 3.

{
~FD

~MD

}
=

[
0 0 MD

li 0
MD

uD MD
uS MD

f MD
li

]
IND

0 0 0
0 INSA

0 0
0 0 MSL

li 0
0 MSL

uS MSL
f MSL

li



IND 0 0 0

0 MA 0 0
0 0 MA 0
0 0 0 MA



~uD

~uS

~fS

~mS

 (16)

The linearization routine returns these four matrices:

Mli = MD
li M

SL
li MA (17)

MuD = MD
uD (18)

MuS =
[
MD

uS + MD
li M

SL
uS

]
MA (19)

Mf =
[
MD

f MSL
li + MD

li M
SL
f

]
MA (20)

9



• Point-to-Line2: Perform steps 3 and 4.

{
~fD

~mD

}
=

[
0

[
MDL

li

]−1
0

−
[
MDL

li

]−1
MDL

uD −
[
MDL

li

]−1
MDL

f

[
MDL

li

]−1 [
MDL

li

]−1

]
 IND

0 0 0
0 0 MD

li 0
MD

uD MD
uS MD

f MD
li




~uD

~uS

~FS

~MS

 (21)

The linearization routine returns these four matrices:

Mli =
(
MDL

li

)−1
MD

li (22)

MuD =
(
MDL

li

)−1 [
MD

uD −MDL
uD

]
(23)

MuS =
(
MDL

li

)−1
MD

uS (24)

Mf =
(
MDL

li

)−1 [
MD

f −MDL
f Mli

]
(25)

• Point-to-Point: Perform step 3.

{
~FD

~MD

}
=

[
0 0 MD

li 0
MD

uD MD
uS MD

f MD
li

]
~uD

~uS

~FS

~MS

 (26)

The linearization routine returns these four matrices:

Mli = MD
li (27)

MuD = MD
uD (28)

MuS = MD
uS (29)

Mf = MD
f (30)

10


