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1 Overview

In many engineering applications, especially in deep water, when hydrodynamic loads are to be considered on
structures, waves are modeled as long-crested and generated as an irregular sea surface elevation process using
linear Airy wave theory and associated kinematics. However, to generate realistic wave fields in shallow water, it is
essential to account for both wave directionality and nonlinearity, which is achieved by employing the directional
irregular second-order wave modeling approach of Sharma and Dean [1]. Using wave steepness as a perturbation
parameter, Stokes [2] provided solutions for the analysis of regular waves. In Stokes study, only the sum frequencies
of first-order waves are considered. For irregular waves, both sum- and difference-frequency interactions up to
second order are considered. The second-order wave solutions for infinite water depth including the contribution of
the difference frequencies were provided by Longuet-Higgins et al. [3]; Sharma and Dean [1] extended the theory for
infinite water depth to intermediate water depths.

1



2 Synthesis of Directional Waves

In irregular waves, this is usually described with a directional spectrum or spreading function, similar to a frequency
spectrum. It is assumed that the total spectrum can be definedas:

S(ω ,θ ) = S(ω)D(ω ,θ ) (2.1)

where(ω) is the frequency spectrum, independent of the direction of the waves, andD(ω ,θ ) is the directional
spectrum, which is a function of frequency,ω as well as wave direction,θ .

2.1 Double Summation Method

The most intuitive method for the generation of deterministic waves is to use the double summation method. The
basic double summation model for directional waves is a discrete version of the standard double integral equation for
the wave elevation of a random sea with continuous distribution of energy over frequency and angle of propagation.
It is given by

η(~x, t) = Re

[
N

∑
n=1

M

∑
m=1

Anmexp[i(ωnt − ~knm·~x)]
]

(2.2)

where,~x = (x,y) is a point on the horizontalx-y plane;Anm= anmexp(iεnm); ωn is the angular frequency;θm is the
wave direction;εnm is the wave phase, which is uniformly distributed between[0,2π ] ;~knm=(|~knm|cosθm, |~knm|sinθm)
is the wave number;N is the total number of frequencies considered; andM is the total number of wave directions.
Also, anm are the component spectral amplitudes, which are calculated as follows:

anm=
√

2S(ωn,θm)∆ω∆θ (2.3)

The wave field is thus a superposition ofM two-dimensional wave trains propagating inM different directions with
each individual wave train.

Although this double summation model has been used quite extensively for directional wave simulation, several re-
searchers (Forristall [4]; Lambrakos [5]; Pinkster [6]) have reported two basic problems, which are that the resultant
wave field is neither ergodic nor spatially homogeneous for finite values ofN andM, regardless of the record length
used. As pointed out by Jefferys [7], these effects are caused by artificial phase locking in any particular realization
due to components traveling in different directions with identical frequencies. The wave energy in any one frequency
band will therefore typically vary over space from approximately 0 to 4 times its average value regardless of how
many directions are used.

The problem can be illustrated by derivation of the cross spectrum between the wave elevations at two spatially
separated points. Waves of different frequencies cannot interact linearly so it is safe to consider one frequency in
isolation; dropping the subscript, thenth frequency of the Eq.2.2 contributes to the surface elevation according to
Eq.2.4

η(~x, t,ω) =
M

∑
m=1

amcos(ωt −~k ·~x+ εm) (2.4)

The cross spectrum between the wave elevations at points~xp = (xp,yp) and~xq = (xq,yq) is denoted bySpq(ω); it is
the Fourier transform of the cross correlationRpq(τ) between the two signals at the two points.

Rpq(τ) = lim
T→∞

1
T

∫ T

0
η(~xp, t)η(~xq, t + τ)dt (2.5)

Spq(ω) =
1

2π

∫ ∞

−∞
Rpq(τ)exp(−iωτ)dτ (2.6)
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Jefferys(1987) showed that the cross spectrumSpq(ω) can be evaluated by the following discrete double summation:

Spq(ω) =
1
2

M

∑
n=1

M

∑
m=1

anamexp(i(~kn · ~xp− ~km ·~xq+ εn− εm)) (2.7)

The real part and imaginary part ofSpq are called co-spectrum and quad-spectrum, respectively. This equation can be
written in terms of 1) the target cross spectrum and 2) an unwanted interaction component introduced by the phase
locked waves.

Spq(ω) =
1
2

M

∑
m=1

a2
mexp(i(~km · (~xp−~xq)))

︸ ︷︷ ︸
target

+
1
2

M

∑
n=1

M

∑
m=1

m6=n

anamexp(i(~kn · ~xp− ~km ·~xq+ εn− εm))

︸ ︷︷ ︸

interaction

(2.8)

If ~xp and~xq are the same point, this expression yields the auto spectrumSpp(ω) as following

Spp(ω) =
1
2

M

∑
m=1

a2
m

︸ ︷︷ ︸
target

+
1
2

M

∑
n=1

M

∑
m=1

m6=n

anamcos(~xp · (~kn− ~km)+ εn− εm)

︸ ︷︷ ︸

interaction

(2.9)

The interaction terms in Eqs.2.8 and 2.9 make the wave field generated by the double summation method neither
ergodic nor spatially homogeneous. Only way to effectivelyeliminate the interaction term is to increase the length of
a realization by decreasing∆ω or to be averaged over many realization.

2.2 Single Summation Method

Alternatively, a single summation method with only one direction per each frequency component reproduces all de-
sirable feature of the double summation method but avoids ergodicity problem. This synthesis method will produce a
spatially homogeneous wave field because all cross-productterms will average to zero regardless of the direction of
propagation of each component. The single summation methodis defined by

η(~x, t) = Re

[
NM

∑
n=1

Anexp(iω
′
nt − i|~kn|(xcosθn+ ysinθn))

]

(2.10)

The complex amplitudes,An are given by

An =

(√

2S(ω ′
n,θn)∆ω∆θ

)

exp(iεn) (2.11)

For any specified time step∆t and the length of simulationTmax, the required frequency interval∆ω can be obtained
by

∆ω =
2π

Tmax
=

2π
N∆t

(2.12)

In each frequency band∆ω , the directional spreading function is calculated forM wave directions. There are thus
M sub-frequencies within each frequency band∆ω , each corresponding to a different wave spreading angle. The
sub-frequencies are given by

ω
′
n = (n−1)

∆ω
M

(2.13)

There is no formal recommendation about how to distribute theM angles into the sub-frequencies. One approach is
to chose the angle randomly for each frequency component, while another approach is to assign a wave angle into
each frequency with an ascending order as followings

θn = θmin+n
′
∆θ (2.14)
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where,n
′
= (n−1) modM. The length of synthesized waves from this method isT

′
max= M ·Tmax, although onlyTmax

is requested for the time domain analysis.

Although the frequency spacing is clearly artificial, the wave field should become realistic for sufficiently largeM
and sufficiently small∆ω . Based on the cross-spectrum analysis, Mile and Funke[8] found that minimum number of
32 wave directions should be used to guarantee the reasonable accuracy.

2.3 Equal Energy Method

This method to simulate directional waves assigns each frequency component of the wave to one ofM discrete wave
directions and a commercial code OrcaFlex uses this method to simulate a wave time history. Unlike the single sum-
mation method, the equal energy method does not divide each frequency band∆ω into M sub-frequencies. Each
wave direction will have the same number of frequencies assigned to it. In order to preserve the energy distribution
in the wave spreading function, the wave directions are assigned so that a greater number of directions are concen-
trated near the central frequency. The wave elevation evaluated by the equal energy method is given by

η(~x, t) = Re

[
N

∑
n=1

Anexp(iωnt − i|~kn|(xcosθn+ ysinθn))

]

(2.15)

The complex amplitudes,An are given by

An = [
√

2S(ωn)∆ω ]
︸ ︷︷ ︸

an

exp(iεn) (2.16)

2.3.1 Frequency Independent spreading function, D(θ )

This method is only valid if the directional spreading function D(ω ,θ ) is independent in frequency component as
follows:

S(ω ,θ ) = S(ω)D(θ ) (2.17)

There are seferal way to define the directional spreading function. The most commonly used isCOSINE−2sspread-
ing function, which was proposed by Longuet-Higgins et al. [3] and given by

D(θ ) =C

∣
∣
∣
∣
cos

(
π (θ − θ̄)

δθ

)∣
∣
∣
∣

2s

, (2.18)

where,S is the spreading parameter and the normalization constant,C, is given by

C=

√
π Γ(s+1)

δθ Γ(s+1/2)
, (2.19)

andΓ is the gamma function. The cumulative energy distribution within the wave spreading function up to angleθ is
given by

P(θ ) =
θ∫

θ̄−δθ/2

D(θ ′)dθ ′. (2.20)

where,θ̄ is a mean wave direction.

The following method may be used to set the appropriate wave directions to satisfy the equal energy approach.

• Step1: Discretize the wave direction rangeδθ by nd steps and calculateD(θ ) spreading function. Setnd to
a sufficiently large number such that the function is smooth enough for interpolation overM directions (set
nd = 3M).
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• Step2: While calculatingD(θ ), calculate the cumulative energy sum up to the current direction asP(θ ).

• Step3: DiscretizeP(θ ) into M steps from 1/M ≤ Pi ≤ 1−1/M. Interpolate the functionD(θ ) found in step 1
to find the corresponding values ofθi . Theθi values are the wave directions used in the equal energy method.

• Step4: Randomly assign each of theN frequencies (ignoring the end frequencies at which the waveamplitude
is defined as zero) to aθi direction such that each wave direction hasN/M frequencies assigned to it.

2.3.2 Frequency dependent spreading function, D(ω ,θ )

In many cases, for simplicity, it is assumed that the directional spreading function is independent of frequency. How-
ever, if someone need to simulate wave time series based on directional wave spectrum with frequency dependent
spreading function such as a directional spectra measured by a buoy, the procedure presented in sec.2.3.1 is invalid.
Especially, when both wave energy from swell system and local wind sea are significant, the assumption that the
directional spreading function is independent of frequency is unreasonable because the mean wave direction and the
degree of directional spreading of two ocean systems may be significantly different; generally, a spreading parameter
scorresponding to swell sea is larger than a spreading parameter corresponding to wind sea.

5



3 Second-order directional wave theory

The second-order directional wave theory proposed by Sharma and Dean [1] is an extension of the theory developed
by Longuet-Higgins [3] for water of infinite depth to apply towater of arbitrary depth. The nonlinear boundary
value problem is solved to the second order by a perturbationapproach accounting for contributions from linear
components from arbitrary frequencies and directions. Thesecond-order wave system is one that is forced by the
linear system and all information on second-order amplitudes and phases are related to the characteristics of the
first-order spectrum.

3.1 Boundary value problem formulations

If the effects of viscosity and turbulence can be regarded assmall, incompressible flows can be described well by a
velocity potential. In other words, the velocity componentsu, v, andw can be defined in terms of the gradients of the
velocity potentialφ in the three Cartesian directions,x, y, andz.

(u,v,w) =

(
∂φ
∂x

,
∂φ
∂y

,
∂φ
∂z

)

(3.1)

The mass conservation equation for an incompressible fluid is

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0 (3.2)

which can be combined with Eq. 3.1 to yield

∇2φ =
∂ 2φ
∂x2 +

∂ 2φ
∂y2 +

∂ 2φ
∂z2 = 0 (3.3)

where,−h≤ z≤ η and−∞ ≤ x,y≤ ∞

Sharma and Dean proposed a second-order velocity potentialfunction which satisfies the appropriate boundary
conditions for the problem.

3.1.1 Bottom Boundary Condition(BBC)

At the bottom boundary, the velocity normal to the boundary is equal to zero. For this case of a horizontal boundary
at depthh,

∂φ
∂z

|z=−h = 0 (3.4)

3.1.2 Kinematics Free Surface Boundary Condition(KFSBC)

A water particle on the free surface remains on the free surface and the vertical velocity at the free surface is equal to
the total rate of change of water elevation.

∂η
∂ t

+
∂φ
∂x

∂η
∂x

+
∂φ
∂y

∂η
∂y

=
∂φ
∂z

(3.5)

where,z= η
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3.1.3 Dynamic Free Surface Boundary Conditions(DFSBC)

The pressurep follows from Bernoulli’s equation and we can write as follows:

p
ρ
+gz+

∂φ
∂ t

+
1
2

∇φ ·∇φ =−Q(t) (3.6)

where,Q(t) is defined as an arbitrary function of time. Here, instead of including the time dependence ofQ in the
velocity potentialφ , let Q be a constant. At the free surfacez= η , the pressure is equal to the atmospheric pressure,
patm and if we chooseQ=−patm/ρ in Eq.3.6 we can rewrite the equation as [9]

⇒ gη +
∂φ
∂ t

+
1
2

∇φ ·∇φ = 0 (3.7)

3.1.4 Combined Free Surface Boundary Condition(CFSBC)

This is an alternative form of Eqs.3.5 and 3.7 above in which,by eliminating the unknown free surface elevationη ,
involves onlyφ and its derivatives.

− ∂ 2φ
∂ t2 −g

∂φ
∂z

− (
∂
∂ t

+
1
2

∇φ ·∇)|∇φ |2 = 0 (3.8)

where,z= η

3.2 Solution of the Boundary Value Problem

The perturbation approach is adopted for solution of the boundary value problem formulated in the previous section.
This approach assumes that all variables can be expanded as aconvergent power series of a small parameter, such as
wave steepness. Also, it is assumed that the combined free surface boundary condition(CFSBC) can be expanded in
a convergent Maclaurin series about the mean water levelz= 0 with a small parameter.

The velocity potentialφ and sea surface elevationη may be represented in the following manner with a perturbation
parameter, wave steepnessε.

φ(x,y,z, t) = φ (1)(x,y,z, t)+φ (2)(x,y,z, t)+ ... (3.9)

η(x,y, t) = η(1)(x,y, t)+η(2)(x,y, t)+ ... (3.10)

where,η(i) andφ (i) is proportional toε i or O(ε i). By substituting the perturbation expansions forφ andη into
Laplace equation Eq.3.3 and the bottom boundary condition Eq.3.4, we can find two separated boundary conditions
as follows:

∇2φ (1) = 0; ∇2φ (2) = 0 (3.11)

∂φ (1)

∂z
|z=−h = 0;

∂φ (2)

∂z
|z=−h = 0 (3.12)

Substituting the perturbation expansions into the dynamicfree surface boundary condition(DFSBC) in Eq.3.7 and the
combined free surface boundary condition(CFSBC)in Eq.3.8, we can separate terms of same orders (O(ε), O(ε2),
O(ε3), ...), just keep terms ofO(ε) andO(ε2), and ignore terms of third or higher order (O(ε3), O(ε4), ...); for
example,η(1)φ (2) andη(2)φ (1) are the term ofO(ε3) and are ignored. From two boundary conditions, DFSBC and
CFSBC, we obtain four additional equations as follows:
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∂ 2φ (1)

∂ t2 +g
∂φ (1)

∂z
= 0 (3.13)

∂ 2φ (2)

∂ t2 +g
∂φ (2)

∂z
=− ∂

∂ t

∣
∣
∣∇φ (2)

∣
∣
∣

2
−η(1) ∂

∂ t

[

∂ 2φ (1)

∂ t2 +g
∂φ (1)

∂z

]

(3.14)

η(1) =−1
g

∂φ (1)

∂ t
(3.15)

η(2) =−1
g

(

∂φ (2)

∂ t
+

1
2
|∇φ (1)|2

)

− 1
g

η(1) ∂ 2φ (1)

∂z∂ t
(3.16)

where,z= 0

3.2.1 First-Order Solution

First, we can select a first-order velocity potential,φ (1) of the following form

φ (1)(~x,z, t) = (−1) ·
N

∑
n=1

g
ωn

an
cosh[|~kn|(h+ z)]

cosh(|~kn|h)
sin(ωnt − ~kn ·~x+ εn) (3.17)

⇒ φ (1)(~x,z, t) = Re

[
N

∑
n=1

i
g

ωn
An

cosh[|~kn|(h+ z)]

cosh(|~kn|h)
exp(iωnt − i~kn ·~x)

]

(3.18)

which satisfies Eq.3.11, 3.12, and 3.13. By substituting Eq.3.17 into Eq.3.15, we obtain the first-order components of
the surface wave elevation,η(1)

η(1)(~x, t) =
N

∑
n=1

ancos(ωnt − ~kn ·~x+ εn) (3.19)

⇒ η(1)(~x, t) = Re

[
N

∑
n=1

Anexp(iωnt − i~kn ·~x)
]

(3.20)

where,An = anexp(iεn) ;~x= (x,y) is a point on the horizontalx-y plane;ωn is the angular frequency;~kn is the wave
number which is related to the frequency,ωn, through the linear dispersion relation,ω2

n = g|~kn|tanh(|~kn|h) (whereh
is the water depth);N is the total number of frequencies considered. Also,an are the component spectral amplitudes,
which are calculated as follows:

E

[
a2

n

2

]

= S(ωn)∆ω (3.21)

where,E [•] is the expected value of•.
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3.2.2 Second-Order Solution

Second-order waves are obtained as a result of the sum and difference interactions between pairs of frequencies and
the phases of the second-order contributions are determined by the sum and difference interactions of the phases of
the first-order component phases, which are random. The second-order velocity potential which satisfies Eq.3.11,
3.12, and 3.14 is given as follows:

φ (2)(~x,z, t) = (−1) ·
N

∑
n=1

N

∑
m=1

anam ·B±
nm·sin

(

(ωn±ωm)t − (~kn± ~km) ·~x+(εn± εm)
)

(3.22)

⇒ φ (2)(~x,z, t) = Re

[
N

∑
n=1

N

∑
m=1

iAnAm ·B±
nm·exp

(

i(ωn±ωm)t − i(~kn± ~km) ·~x
)
]

(3.23)

By substituting for the first-order potentialφ (1), the first-order surface elevationη(1), and the second-order potential
φ (2) in Eq.3.16, we obtain the second-order correction to the linear sea surface elevation as follows:

η(2)(~x, t) =
N

∑
n=1

N

∑
m=1

anam ·L±
nm·cos

(

(ωn±ωm)t − (~kn± ~km) ·~x+(εn± εm)
)

(3.24)

⇒ η(2)(~x, t) = Re

[
N

∑
n=1

N

∑
m=1

AnAm ·L±
nm·exp

(

i(ωn±ωm)t − i(~kn± ~km) ·~x
)
]

(3.25)

The transfer function derived by Sharma and Dean,L±
nm andB±

nm are given by:

L±
nm(ωn,ωm,θn,θm) =

1
4

[

D±
nm− (|~kn||~km|cos(θn−θm)∓RnRm)√

RnRm
+(Rn+Rm)

]

(3.26)

B±
nm(z,ωn,ωm,θn,θm) =

g2

ωnωm
· 1
4

cosh[k±nm(h+ z)]

cosh[k±nm(h)]

D±
nm

ωn±ωm
(3.27)

where,
Rn = |~kn| tanh(|~kn|h) (3.28)

D±
nm=

{(√Rn±
√

Rm)[
√

Rm(kn
2−Rn

2)±√
Rn(km

2−Rm
2)]}

[(
√

Rn±
√

Rm)
2− k±nmtanh(k±nmh)]

+
[2(

√
Rn±

√
Rm)

2
][|~kn||~km|cos(θn−θm)∓RnRm]

[(
√

Rn±
√

Rm)
2− k±nmtanh(k±nmh)]

(3.29)

In the above,k+nm andk−nm are given as follows :

k+nm=

√

kn
2+ km

2+2knkmcos(θn−θm)

k−nm=

√

kn
2+ km

2−2knkmcos(θn−θm)

(3.30)

For infinite depth, the equations proposed by Sharma and Dean[1] reduces to the equations derived by Longuet-
Higgins et al. [3] for deep water. Also, for~kn =~km andN = 1, the formulas for velocity potential and surface eleva-
tion reduce to the familiar Stokes second-order equations [2].
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3.3 Validity of the Second-order Wave theory

While the second-order irregular wave model is a more accurate representation of irregular seas in shallow waters
compared to the linear irregular wave model, it obviously does not model the complete nonlinear character of waves,
and is not valid for all cases. The physical parameter that determines the range of validity is the wave steepness.
When the wave steepness exceeds a certain value, the second-order model is no longer valid, and a higher-order
model is required. In fact, when waves become too steep, theycan break and no model based on solution of Laplaces
equation (in terms of velocity potential) is valid.
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4 Second-Order Wave Kinematics

It is assumed that the considered fluid is incompressible, inviscid, and irrotational. Specially, the velocity fields of
irrotationl fluid can be expressed as follows:

~u= ∇φ (4.1)

~u(1) = (u(1)x ,u(1)y ,u(1)z ) = ∇φ (1) =

(

∂φ (1)

∂x
,

∂φ (1)

∂y
,

∂φ (1)

∂z

)

(4.2)

~u(2) = (u(2)x ,u(2)y ,u(2)z ) = ∇φ (2) =

(

∂φ (2)

∂x
,

∂φ (2)

∂y
,

∂φ (2)

∂z

)

(4.3)

The acceleration of a water particle can be evaluated by the material or substantial derivative of velocity vector,~u.

D
Dt

~u=
∂~u
∂ t
︸︷︷︸

Term1

+~u·∇~u
︸ ︷︷ ︸

Term2

(4.4)

where,Term1 andTerm2 are called the local acceleration at a fixed point and the convective acceleration, respec-
tively. However, we are only interested in the accelerationa fixed point, which is evaluated as follows:

~a(1) = (a(1)x ,a(1)y ,a(1)z ) =
∂~u(1)

∂ t
=

(

∂u(1)x

∂ t
,

∂u(1)y

∂ t
,

∂u(1)z

∂ t

)

(4.5)

~a(2) = (a(2)x ,a(2)y ,a(2)z ) =
∂~u(2)

∂ t
=

(

∂u(2)x

∂ t
,

∂u(2)y

∂ t
,

∂u(2)z

∂ t

)

(4.6)

To obtain the first- and second-order pressure, let substitute the perturbation expansions of velocity potential into the
Bernoulli’s equation in Eq.3.6 and separate terms of same order.

p
ρ
+gz+

∂
∂ t

(φ (1)+φ (2)+ ...)+
1
2

∇(φ (1)+φ (2)+ ...) ·∇(φ (1)+φ (2)+ ...) =−Q (4.7)

p
ρ
=−gz−Q+

[

∂φ (1)

∂ t

]

︸ ︷︷ ︸

O(ε)

+

[

∂φ (2)

∂ t
+

1
2

∇φ (1) ·∇φ (1)

]

︸ ︷︷ ︸

O(ε2)

+O(ε3)+ ... (4.8)

Therefore, the first- and second-order dynamic pressure,p(1)d andp(2)d are obtained as follows [10] [11]:

p(1)d =−ρ
∂φ (1)

∂ t
(4.9)
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p(2)d =−ρ

[

∂φ (2)

∂ t
+

1
2

∇φ (1) ·∇φ (1)

]

=−ρ

[

∂φ (2)

∂ t

]

︸ ︷︷ ︸

Term1

−ρ
[

1
2
~u(1) ·~u(1)

]

︸ ︷︷ ︸

Term2

(4.10)

where,Term1 andTerm2 are called the second-order potential term and quadratic interaction term, respectively.

4.1 Wave Surface Elevation

η(1)(~x, t) = Re

[
N

∑
n=1

Anexp(−i~kn ·~x)exp(iωnt)

]

(4.11)

η(2±)(~x, t) = Re

[
N

∑
n=1

N

∑
m=1

A±
nm·K±

nm·exp(−i(~kn± ~km) ·~x)exp(iω±
nmt)

]

(4.12)

where,
ε±nm= εn± εm and ω±

nm= ωn±ωm (4.13)

K±
nm= L±

nm (4.14)

A+
nm= AnAm and A−nm= AnA∗

m (4.15)

4.2 Wave Particle Velocity

4.2.1 First-Order

u(1)x (~x,z, t) = Re

[
N

∑
n=1

Anωn
cosh[|~kn|(h+ z)]

sinh(|~kn|h)
cosθnexp(−i~kn ·~x)exp(iωnt)

]

(4.16)

u(1)y (~x,z, t) = Re

[
N

∑
n=1

Anωn
cosh[|~kn|(h+ z)]

sinh(|~kn|h)
sinθnexp(−i~kn ·~x)exp(iωnt)

]

(4.17)

u(1)z (~x,z, t) = Re

[

(ı) ·
N

∑
n=1

Anωn
sinh[|~kn|(h+ z)]

sinh(|~kn|h)
exp(−i~kn ·~x)exp(iωnt)

]

(4.18)

4.2.2 Second-Order

u(2±)
x (~x,z, t) = Re

[
N

∑
n=1

N

∑
m=1

A±
nm·xU̇±

nm·exp(−i(~kn± ~km) ·~x)·exp(iω±
nmt)

]

(4.19)

u(2±)
y (~x,z, t) = Re

[
N

∑
n=1

N

∑
m=1

A±
nm·yU̇±

nm·exp(−i(~kn± ~km) ·~x)·exp(iω±
nmt)

]

(4.20)
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u(2±)
z (~x,z, t) = Re

[
N

∑
n=1

N

∑
m=1

A±
nm·zU̇±

nm·exp(−i(~kn± ~km) ·~x)·exp(iω±
nmt)

]

(4.21)

where,
xU

±
nm= B±

nm· (|~kn|cosθn±|~km|cosθm) (4.22)

yU
±
nm= B±

nm· (|~kn|sinθn±|~km|sinθm) (4.23)

zU
±
nm= (ı) ·B±

nm·k±nm· tanh[k±nm(h+ z)] (4.24)

4.3 Wave Particle Acceleration

4.3.1 First-Order

a(1)x (~x,z, t) = Re

[

(ı) ·
N

∑
n=1

Anω2 cosh[|~kn|(h+ z)]

sinh(|~kn|h)
cosθnexp(−i~kn ·~x)exp(iωnt)

]

(4.25)

a(1)y (~x,z, t) = Re

[

(ı) ·
N

∑
n=1

Anω2 cosh[|~kn|(h+ z)]

sinh(|~kn|h)
sinθnexp(−i~kn ·~x)exp(iωnt)

]

(4.26)

a(1)z (~x,z, t) = Re

[
N

∑
n=1

An(−1)ω2sinh[|~kn|(h+ z)]

sinh(|~kn|h)
exp(−i~kn ·~x)exp(iωnt)

]

(4.27)

4.3.2 Second-Order

a(2±)
x (~x,z, t) = Re

[
N

∑
n=1

N

∑
m=1

A±
nm·xU̇±

nm·exp(−i(~kn± ~km) ·~x)·exp(iω±
nmt)

]

(4.28)

a(2±)
y (~x,z, t) = Re

[
N

∑
n=1

N

∑
m=1

A±
nm·yU̇±

nm·exp(−i(~kn± ~km) ·~x)·exp(iω±
nmt)

]

(4.29)

a(2±)
z (~x,z, t) = Re

[
N

∑
n=1

N

∑
m=1

A±
nm·zU̇±

nm·exp(−i(~kn± ~km) ·~x)·exp(iω±
nmt)

]

(4.30)

where,
xU̇

±
nm= (ı) ·xU±

nm·ω±
nm (4.31)

yU̇
±
nm= (ı) ·yU±

nm·ω±
nm (4.32)

zU̇
±
nm= (ı)zU

±
nm·ω±

nm (4.33)
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4.4 Dynamic Pressure

4.4.1 First-Order

p(1)(~x,z, t) = Re

[
N

∑
n=1

Anρwg
cosh[|~kn|(h+ z)]

cosh(|~kn|h)
exp(−i~kn ·~x)exp(iωnt)

]

(4.34)

4.4.2 Second-Order (only second-order potential term)

p(2±)(~x,z, t) = Re

[
N

∑
n=1

N

∑
m=1

A±
nm·P±

nm·exp(−i(~kn± ~km) ·~x) ·exp(iω±
nmt)

]

(4.35)

P±
nm= ρw ·B±

nm·ω±
nm (4.36)

4.5 Properties of Quadratic Transfer Function

4.5.1 Symmetricity of QTF

Similar expressions of the quadratic transfer function(QTF) arise in describing loads and responses of floating
structure; in this case, the QTF are evaluated numerically from software tools for wave diffraction and radiation
analysis such as WAMIT or AQWA. The QTFs (F2±

mn ) used for evaluating second-order forces of a floating structure
always have the following symmetry relations:

F2+(ωn,ωm) = F2+(ωm,ωn) and F2−(ωn,ωm) = F2−(ωm,ωn)
∗ (4.37)

Symmetry relations in Eq.4.37 are also applicable to QTFs for second-order kinematics and this symmetricity prop-
erty significantly reduce the computational effort by enabling to only take the lower- or upper-triangular part when
someone numerically simulate wave kinematic.
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Figure 1. Transfer function for η2± (ω > 0): unidirectional wave(θn = θm = 0)
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Figure 2. Transfer function for φ2± (ω > 0) at MSL(h = 20m): unidirectional wave(θn = θm = 0)
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Figure 3. Transfer function for u2±
x (ω > 0) at MSL(h = 20m): unidirectional wave(θn = θm = 0)

4.5.2 Singularity of QTF

Formulations for the first- and second-order wave kinematics shown in previous sections are determined from the so-
lution of a boundary value problem(see Eq.3.3 - 3.8). When weimplement the formulations to numerically simulate
wave kinematics, these formulations have several restrictions, which stem from physically correct or weakly-correct
assumptions considered during solving the boundary value problem. One of the restriction is the singularity of the
first- and second-order wave kinematic transfer functions.The singularity problem is also shown in QTFs proposed
by other researchers.(Longuet-Higgins [3]; Marthinsen and Winterstein [12]; Nwogu [13])

QTF proposed by Longuet-Higgins [3]

B±
nm=

g2

ωnωm

(ωn±ωm)(~kn · ~km∓|~kn||~km|)
(ωn±ωm)2−g|~kn± ~km|

(4.38)
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Figure 4. Transfer function for u2±
z (ω > 0) at MSL(h = 20m): unidirectional wave(θn = θm = 0)
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Figure 5. Transfer function for a2±
x (ω > 0) at MSL(h = 20m): unidirectional wave(θn = θm = 0)

QTF used by Marthinsen and Winterstein [12]

B±
nm= (1− δ−i, j)

g2

ωnωm

g2|~kn||~km|
2ωnωm

− 1
4(ω

2
n +ω2

m±ωnωm)+
g2

4
ωn|~km|2±ωm|~kn|2
ωnωm(ωn±ωm)

(ωn±ωm)−g |~kn|±|~km|
ωn±ωm

tanh[(|~kn|± |~km|)h]
(4.39)

where,δ−i, j = 1 if n= m, zero otherwise and is introduced to avoid the singularity of B±
nm.

QTF proposed by Nwogu [13]

K±
nm=

ωnωm(k±nmh)2cos(θn−θm)[1− (α +1/3)(k±nmh)2]

2λk′
nk′

mh3

+
ω±

mn[1−α(k±nmh)2][ωnk
′
mh(|~kn|h±|~km|hcos(θn−θm))+ωmk

′
nh(|~kn|hcos(θn−θm)±|~km|h)]

2λk′
nk′

mh3
(4.40)
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Figure 6. Transfer function for a2±
z (ω > 0) at MSL(h = 20m): unidirectional wave(θn = θm = 0)

0

0.5

1

1.5

2

2.5

0

0.5

1

1.5

2

2.5
0

5000

10000

15000

ω
n
(rad/s)ω

m
(rad/s)

(a) |P+
nm|

0

0.5

1

1.5

2

2.5

0

0.5

1

1.5

2

2.5
0

2000

4000

6000

ω
n
(rad/s)ω

m
(rad/s)

(b) |P−
nm|

Figure 7. Transfer function for p2± (ω > 0) at MSL(h = 20m): unidirectional wave(θn = θm = 0)

λ = (ω±
nm)

2[1−α(k±nmh)2]−g(k±nm)
2h[1− (α +1/3)(k±nmh)2] (4.41)

k
′
n = |~kn|[1− (α +1/3)(|~kn|h)2 (4.42)

where,α = (zα/h)2/2+(zα/h) andzα ≈−0.53h from shallow water depths up to the deep water depth limit.

Singularity at ω = 0

Whenω in Eq.3.17 approaches zero, the denominator of the equationapproaches zero. Although the numerator
also approaches zero, we may get an unwanted non-numerical value (so-calledNaN), and a special treatment may
be required during numerical simulation of the kinematics depending on what software tools are used. To avoid
discontinuity or singularity problem at zero frequency, someone can simply set the kinematics equal to zero.

QTFs of the second-order wave elevation and velocity potential, L±
nm andB±

nm also have similar singularity issue at

zero frequency. As shown in Eq.3.26, the denominator of the first term inL±
nm is

√
RnRm=

√

|~kn| tanh(|~kn|h)
√

|~km| tanh(|~km|h),
which approaches zero when eitherωn or ωm goes to zero.
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One of the numerators ofB±
nm in Eq.3.27 isD±

nm in Eq.3.29. The numerators of both first and second terms ap-
proaches zero when eitherωn or ωm goes to zero. In this case, there is no need for any special treatment during a
numerical simulation because the denominator ofB±

n m is not zero unlessωn = ωm = 0.

Based on the existence of singularity in the first- and second-order transfer functions, we presume that the formula-
tions presented in sec.3.2 do not evaluate the first- and second-order wave kinematic whenωn = 0 or ωm = 0. This
presumption is physically understandable because we assume that the a zero frequency regular wave does not have
any wave energy and the zero-energy wave component does not enable to interact with any other wave components.
Please refer to Fig.8 and 9 to check the singularity issue atω = 0.
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Figure 8. Transfer function K±
nm including ω = 0
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Figure 9. Transfer function B±
nm including ω = 0

Singularity at diagonal components of L−
nm and B−

nm

Another singularity considered during numerical simulation is the discontinuity in diagonal component ofL−
nm and

B−
nm. Whenωn = ωm, the denominator terms ofD−

nm equal to zero, which makesL−
nm andB−

nm singular along the
diagonal components. Physically, the interaction betweentwo wave components propagating to opposite direction
with same magnitude results in total energy loss. It can be explained through Fig.10, which shows how to interact
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two wave components. As shown in Fig.10, two free wave component~kn and~km generates new bounded wave
components~kn+~km and~kn−~km by summation interaction and difference interaction, respectively.

Therefore, unlike difference interaction QTFs for second order wave force, all diagonal components ofL−
nm andB−

nm
should be set to zero, which means total energy loss by the interaction between two wave components with same
magnitude and difference propagation direction,~kn −~kn. This is apparent for the QTF of velocity potential,B−

nm
because the sign of upper triangular part inB−

nm is opposite to the lower triangular part.

(a) Sum interaction

�

�

(b) Difference interaction

Figure 10. The sum and difference interaction of the wavenumber vectors
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5 Numerical Simulation of Second-Order Wave Kinematics

In this chapter, the equations and algorithms used to numerically evaluating the second order wave kinematics based
on the linear or first order wave properties. The forms of the equations presented here are what is used in the Wave2
module within HydroDyn. Before presenting the equations, we first discuss the validity issue of the second order
wave theory briefly introduced in sec.3.3.

5.1 Limitation of Second-Order Wave Theory

As shown in sec.3.2, the solutions of the second-order boundary value problem are derived based on a perturbation
approach, which uses a wave steepness,ε ≪ 1 as an expansion parameter. For a regular wave component, Dean
and Dalrymple definedε = ka/2, wherek anda are wavenumber and wave amplitude. According to Dean and
Dalrymple, the second-order wave theory is valid if two criteria are fulfilled as follows:

• Convergence: First, the ratio of the second-order term to the first order term in Eq.3.9 must be much smaller
than 1.

ε2φ (2)

εφ (1)
=

kaφ (2)

2φ (1)
≪ 1 (5.1)

⇒ 3
8

kacosh(2kh)

cosh(kh)sinh3(kh)
≪ 1 (5.2)

• No bump in the trough: Second, the physical properties of the wave profile require that there is no bump in
the trough. This is indicated by a negative second derivative of the wave trough, which lead to the criterion

ka<
sinh3(kh)

cosh(kh)[2+ cosh(2kh)]
(5.3)

In addition to the above two criteria, the breaking criterion for the wave steepness must be fulfilled. One of the
breaking wave critera in arbitrary water depth is given by the Miche breaking criterion

H
L

=
2a

2π/k
< 0.142tanh(kh) (5.4)

⇒ ka< 0.142π tanh(kh) (5.5)

Fig.11 illustrates the different criteria ofka as a function ofkh. Except whenkh→ 0, the convergence criteria is
satisfied when the criterion for no bump in the trough and wavebreaking criterion are satisfied. Whenkh> 0.62π ,
the maximum wave steepness is restricted by the breaking wave criterion.

In a regular wave case, the validity of second-order wave theory can be simply controlled by limiting the consid-
ered maximum wavenumber to satisfy the three criteria(see Eq.5.2, 5.3, and 5.5). However, because these criteria
were derived for a regular wave case, it may or may not be physically correct to directly expand the criteria to the
irregular wave case. The following three criteria can be used to evaluate the maximum wave frequency for the valid
application of the second-order wave theory.

• Hu and Zhao [14]: Based on results from numerical simulations, Hu and Zhao suggested that the second-
order wave model presented here is valid as long asHs/Lz is smaller than approximately 0.08, where,Hs is the
significant wave height andLz is the wavelength corresponding to the zero-crossing frequencyωz =

√

γ2/γ0

andγn is given by

γn =

∫

ωnS(ω)dω (5.6)
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Sticky Note
Again, as we discussed, I suggest leaving the cut-off frequencies as user-defined for now.  There are other implications e.g. for Morison's equation that impose other limits.
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Figure 11. Different criteria for ka as a function of kd

• Stansberg [15]: Stansberg proposed a useful criterion to establish the highest frequency, for which the second-
order wave theory may be considered valid, as follows:

kcut =
2

E(amax)[1+1/2(kpE(amax))]
(5.7)

wherekcut is related to the limiting (cut-off) frequency,ωcut, through the linear dispersion relation andkp is
a wavenumber corresponding to the spectral peak period,Tp; E(amax) is the expected value of the extreme
wave amplitude of a gaussian wave record, which follows Rayleigh distribution. The denominator in Eq.5.7 is
the simplified second-order correction for a non-gaussian wave field. According to the extreme value theory,
E(amax) is given by

E(amax) =
Hs

4
[
√

2ln(Nz)+
γem

√

2ln(Nz)
] (5.8)

Nz =
tmax

Tz
(5.9)

where,γem= 0.577... is the Euler-Meschenori constant;Nz is the number of zero-upcrossing wave cycles and
tmax is the length of simulation insec.

• DNV-RP-C205 [16]: DNV-RP-C205 guideline provides a simpler criterion for theapplication of second-order
wave theory as follows:

ωcut =

√
2g
Hs

(5.10)

In irregular wave case, the validity of second order wave theory is significantly affected by the spectral or statistical
properties of the considered irregular wave such as the peakwave period(Tp), significant wave height(Hs), and
the length of simulation(tmax) depending on the considered criteria. During a numerical simulation of the second-
order wave kinematic, therefore, the maximum wave frequency arbitrarily assigned without considering the spectral
properties of the irregular wave may result in the generation of physically-incorrect second-order wave kinematics.
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5.2 Sampling Theorem and additional requirement of cut-off frequency, ωcut

In digital simulation of wave surface elevation and kinematics, we replace continuous timet, by discrete time array,
tp = p∆t, where∆t = tmax/N, such thatp= 1,2, ...,N. By virtue of the periodicity of Fourier series, we have

∆ω =
2π
tmax

(5.11)

The Nyquist sampling theorem provides a prescription for the nominal sampling interval required to avoid aliasing.
It may be stated simply as follows:

• The sampling frequency,ωs = 2π/∆t should be at least twice the highest frequency contained in the signal.

Or in mathematical term,
ωs ≥ 2ωcut (5.12)

If ωcut = M∆ω , then we must satisfy
[

ωs =
2π
∆t

=
2π

tmax/N

]

≥
[

2ωcut = M∆ω = M
2π
tmax

]

(5.13)

⇒ N ≥ 2M (5.14)

In the numerical simulation of second-order wave kinematics, the largest frequency of wave components gener-
ated by the second-order wave-wave interaction is 2M∆ω , which is associated with the sum-frequency interaction.
Therefore, to satisfy the sampling theorem for second-order wave simulation, we must ensure that

N ≥ 4M (5.15)

This simply means that a cut-off frequency,ωcut evaluated by a criterion presented in sec.5.1 must satisfy

[

N =
tmax

∆t

]

≥
[

4M = 4
ωcut

∆ω
= 4

ωcut

2π/tmax

]

(5.16)

⇒ ωcut ≤
π

2∆t
(5.17)

5.3 Numerical Simulation using Inverse Fast Fourier Transform(IFFT)

As shown in Eq.4.11 - Eq.4.36, the second-order wave kinematics can be obtained using the double Fourier trans-
form. Although computation efficiency is improved by using IFFT, the formulations of the second-order wave
kinematics are still time consuming. When the wave spectrumis divided into N components, the integration should
be repeatedN2 times, if direct integration method is applied. Fortunately, by collecting same frequency terms first,
it is possible to reduce the calculation times to 2N− 1 for sum frequency contributions, andN− 1 for difference
frequency terms.

Figure 12 and 13 shows which second-order wave frequency is generated by sum and difference interaction between
ωn andωm. In the figure,ω1 = ∆ω , ω2 = 2∆ω , · · ·, ωN = N∆ω . If same frequency terms, i.e. the diagonal going
from the lower left corner to the upper right corner in sum-frequency matrix and the diagonal going from upper left
corner to the lower right corner in difference-frequency matrix, are collected, the double summation ofN×N terms
can be replaced with a single summation of 2N− 1 terms for sum-frequency components(ωµ+ = µ+∆ω ; µ+ =
{2,3, ...,2N}) andN−1 terms for difference-frequency components(ωµ− = µ−∆ω ; µ− = {1,2, ...,N−1})
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Again, I didn't fully review this section, but the same simplifications taken for the 2nd-order Hydro can be taken here (neglecting the mean-drift term).



� � � � � � � � � �� ���

� �

� �

� �

� �

� ���

� �

��	 
�	 ��	 ��	


�	

 � �

�	
���	

�� � �

�	

�� � �

�	

��	

��	  � �

�	

��	

��	

��	

��	

��	

� �

� �

�

�

Figure 12. Second-order wave frequency matrix: Sum-frequency interaction
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Figure 13. Second-order wave frequency matrix: difference-frequency interaction
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5.3.1 Sum-Frequency Interaction

To simplify the computation of the sum-frequency wave kinematics, the matrix should be split into three regions:

• Region1 -n= m: ωµ+ = {2,4,6, ...,2N}×∆ω

• Region2 -n 6= mand 3≤ n+m≤ N+1: ωµ+ = {3,4,5, ...,N+1}×∆ω

• Region3 -n 6= mandN+2≤ n+m≤ 2N−1: ωµ+ = {N+2,4,5, ...,2N−1}×∆ω

Using the symmetricity property of QTFs introduced in sec.4.5.1, we can obtain the following equation for Fourier
coefficient of sum-frequency interaction term,Hµ+ :

• Region1:
Hµ+ = AkAkX+ (ωk,ωk) whereµ+ = 2k ; k= {1,2, ...,N}

• Region2:

Hµ+ = 2∑⌊(µ+−1)/2⌋
l=1 Al Aµ+−l X

+(ωl ,ωµ+−l )

• Region3:

Hµ+ = 2∑⌊(µ+−1)/2⌋
l=µ+−N Al Aµ+−l X

+(ωl ,ωµ+−l )

where⌊•⌋ represents the floor function andX+ in above equations is equivalent to the sum-frequency part of redtext
in Eq.4.19, 4.20, 4.21, 4.28, 4.29, 4.30, and 4.35). After evaluating Fourier coefficientHµ+ , we can get a time series
of the second-order wave kinematic,Y+(~x,z, t) by applying one-dimensional IFFT procedure .

Y+(~x,z, t) = IFFT
[
Hµ+

]
(5.18)

5.3.2 Difference-Frequency Interaction

Unlike the sum-frequency interaction case, Fourier coefficient of difference-frequency interaction term,Hµ− can be
evaluated a relatively simple equation without splitting the matrix as follows:

Hµ− = 2
N−µ−

∑
l=1

Al+µ−A∗
l X−(ωl+µ− ,ωl ) (5.19)

where,µ− = {1,2, ...,N−1}, andX− in Eq.5.19 is equivalent to the difference-frequency part of redtext in Eq.4.19,
4.20, 4.21, 4.28, 4.29, 4.30, and 4.35). By applying one-dimensional IFFT procedure, a time series of the second-
order wave kinematic by difference wave-wave interaction is simply given

Y−(~x,z, t) = IFFT
[
Hµ−

]
(5.20)
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